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Abstract

We show a Mourre estimate for a class of unbounded Jacobi matrices. In particular, we deduce the
absolute continuity of the spectrum of suchmatrices.We further conclude some propagation theorems
for them.
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1. Introduction

1.1. Overview

Let H := l2(Z) be the complex Hilbert space of square summable sequences endowed
with the scalar product

〈�,�〉 =
∑
n∈Z

�n�n.
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Consider the second-order difference operatorH acting inH by

(H�)n = an−1�n−1 + bn�n + an�n+1, (1.1)

wherebn ∈ R andan > 0 for alln ∈ Z. It is usually called a bilateral Jacobi matrix. Clearly,
H is a densely defined symmetric operator onl20(Z). The latter denotes the subspace of
sequences with only finitely many nonzero coordinates. It is known that (cf.[2]), in general,
H is not essentially self-adjoint onl20(Z) if the weightsan grow fastly to infinity. In such
case all the self-adjoint extensions have a purely discrete spectrum. In the sequel we assume
thatH is essentially self-adjoint on thel20(Z). This is the case if, for example, the Carleman
condition

∑
n

1

|An| = ∞, where|An| = max{a−n−2, an}.

is satisfied. For a deeper discussion of the self-adjointness question of Jacobi matrices we
refer the reader to[2] (see also [16] for recent results).
The spectral properties of Jacobi matrices are extensively studied by the help of different

methods, see for example [5–15,17,19] and references therein. A part of this literature is
based on the positive commutatormethod of Putnam–Kato (cf. [20]). It is used, for example,
byDombrowski [6–8], Dombrowski–Pedersen [9–12], Janas–Moszynski [13] andPedersen
[19]. This paper is a contribution in this direction.
ThePutnam–Katomethod states that if there is a bounded self-adjoint operatorAsuch that

the commutator[H, iA] is positive and injective, thenH has a purely absolutely continuous
spectrum.This theoremallowed the resolution of great spectral problems [21]. However, the
boundedness ofA is rather annoying in some applications, since it excludes many natural
candidates to this role. The same can be said on the required commutator positivity which
is global and then very unstable under perturbation (even compact). The conjugate operator
theory of Mourre [1,3,18,23] resolves these problems. The conjugate operatorA has not to
be bounded anymore. Moreover, the commutator has only to be positive locally and up to a
compact operator. The prize to pay is some additional regularity of the underlying operator
H with respect toA.
TheMourre method has proved its powerful in the spectral analysis and scattering theory

of partial differential operators (see [1]), discrete Schrődinger operators and bounded Jacobi
matrices (see [4]), etc. Surprisingly, in the context of unbounded Jacobi matrices Mourre’s
method has never been used yet. This might create a negative impression on this theory
in this context. We even meet in the literature statement explaining that Putnam–Kato’s
method is superior to Mourre’s theory in the context of unbounded Jacobi matrices, see
the introduction of [19]. Our purpose in this paper is to show that this is not fully true. We
indeed apply the conjugate operator theory to study the spectral and propagation properties
of unbounded Jacobi matrices.We focus here on models considered in the quoted literature
and for which Putnam–Kato’s method does not apply, since the unboundedness ofA, see
[12,13].
More specifically, in this paper we deal with weights of the following form

an = |n|�(1+ �n), 0 < � < 1 and�n → 0, asn → ∞. (1.2)
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By Carleman conditionH is essentially self-adjoint onl20(Z). Consider the operatorA
defined inH by

(A�)(n) = i(�n−1�n−1 − �n�n+1),

�n = n

an

for |n|�N0,

The operatorA has been used in the literature for the analysis of Jacobi matrices with
weights of the form (1.2) but with null diagonal elements, see for instance [12,13]. Since
for 0 < � < 1 the operatorA is unbounded, Putnam–Kato’s method does not apply. This
explains why only the absence of the point spectrum is proven in [12,13] by a kind of Virial
theorem. In this work we show that Mourre’s theory applies easily in this context and so
we complete these results by proving the absence of singular continuous spectrum for such
matrices. The stability of the Mourre estimate under compact perturbation allows us to treat
a class of diagonal elements.
Finally, notice that for the case where� = 1 the operatorA becomes bounded and no

Mourre estimate can be expected with suchA. This does not mean that Mourre’s theory
does not apply but only says that we have to change the conjugate operatorA. This will
be done in a work in progress. For the case where� = 0 we get the discrete Schrődinger
operator already studied by Mourre’s method in [4].

1.2. Main results

Our assumption on�n andbn are the following:

|�n+1 − �n|�C|n|−�, with � > 1, (1.3)

|bn+1 − bn|�C|n|−�, with � + � > 1. (1.4)

This means that the discrete derivatives of�n and�n decays sufficiently enough, and then
�n and�n are not so oscillating.

Theorem 1.1. If (1.2)–(1.4)hold then the point spectrum�p(H) of H is finite and the
singular continuous spectrum�sc(H) of H is empty.

In particular, if�n = bn = 0 then we are in the situation considered by [12], and if
only bn = 0 we get the case considered by [13]. In these papers only the absence of the
point spectrum is proven. Notice, however, that Theorem 1.6 of [13] applies to our case
but their proof is based on the Gilbert–Pearson theory of subordinate solutions. This is a
one-dimensional method while our approach is not, and so our results can be extended to
multidimensional models. Furthermore, we derive some a priori estimates for the resolvent
of H, that are of physical interest, see the next theorem.
Define the following numbers

m = min(� − 1,� + � − 1);
� = m + 1− �

2
.
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Consider the multiplication operatorN acting inH by

(N�)n =
√
1+ n2�n,

which is clearly a positive operator inH. For a complex numberzwe denote by�z and�z

the real and the imaginary parts ofz. PutC± = {z ∈ C/± �z > 0}. We have the following
propagation theorem:

Theorem 1.2. Assume that(1.2)–(1.4)hold.Then the holomorphic maps

C± � z �−→ N−�(H − z)−1N−� ∈ B(H)

extends to a locallyHőlder continuousmapsonC±∪[R\�p(H)]of order� = min( m
1−� ,

1
2).

Moreover for all	 ∈ C∞
0 (R \ �p(H)) we have

‖N−�e−iH t	(H)N−�‖�C(1+ |t |)−�.

The paper is organized as follows. In Section 2 we give a brief review on what we need
from the conjugate operator theory. Section 3 is completely devoted to case wherebn = 0.
In Section 4 we prove Theorems1.1 and 1.2.

2. The conjugate operator method

In this section we present a short description of what we need fromMourre’s theory. This
is based on [1,23].
LetH,Abe two self-adjoint operators in aHilbert spaceH. Denote by�(H) the spectrum

of H , and forz ∈ C \ �(H) we setRz = (H − z)−1 the resolvent ofH. We equipD(H)

with the graph topology associated to the norm

‖f ‖H = ‖f ‖ + ‖Hf ‖.

Definition 2.1. Let 0< s < 1. We say thatH is of classC1(A) if the map

t �−→ Rz(t) := e−iAtRze
iAt ∈ B(H)

is strongly of classC1 onR for somez ∈ C \ �(H). In such case if the derivative is Hőlder
continuous of orders (respectively stronglyC1) then we say thatH is of classC1+s(A)

(respectivelyC2(A)).

For z ∈ C \ �(H) define

D(z) := {� ∈ D(A)/R(z)� ∈ D(A)}.
One has the following characterization of theC1(A)-regularity in terms of the commutator
[H, iA] (see[1]):

Proposition 2.1. TheoperatorH isof classC1(A) if andonly if the following twoconditions
hold:
(i) the setsD(z) andD(z) are dense inD(A), for somez ∈ C \ �(H),
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(ii) there is a constantc > 0 such that for all� ∈ D(A) ∩ D(H):

|〈�, [H, iA]�〉| = |2�〈H�, iA�〉|�c‖�‖2H .

In particular, ifH is of classC1(A) thenD(A) ∩ D(H) is dense inD(H) endowed with
‖ · ‖H and [H, iA] has a unique extension to a continuous sesquilinear form onD(H).
Then by Riesz Lemma there exists a unique bounded operator, denoted by the same symbol
[H, iA], fromD(H) to its adjointD(H)∗ associated to this extension. LetEbe the spectral
measure ofH.

Definition 2.2. Assume thatH is of classC1(A). We say thatA is conjugate toH on a real
open set� if there exist a constanta > 0 and a compact operatorK in H such that

E(�)[H, iA]E(�)�E(�) + K. (2.1)

The inequality (2.1) is called the Mourre estimate.

Theorem 2.1. Assume that H is of classC1(A) and that A is conjugate to H on a real open
set�. Then:
(1) the operator H has at most a finite number of eigenvalues in� (counted with multiplic-

ities).
(2) if H is of classC1+s(A) for somes > 0 then H has no singular continuous spectrum in

�.

The last statement is a particular case of the main theorem of[23] (see [1] for different
versions of this theorem). Let us set〈A〉 = (1+ A2)1/2. One has

Theorem 2.2. Assume that H is of classC1+s(A), 0 < s < 1/2.Then the holomorphic
maps

C± � z �−→ 〈A〉−(s+ 1
2 )(H − z)−1〈A〉−(s+ 1

2 ) ∈ B(H)

extends to a locally Hőlder continuous maps onC± ∪ [� \ �p(H)] of order s.Moreover,
for every	 ∈ C∞

0 (� \ �p(H)) we have

‖〈A〉−(s+ 1
2 )e−iH t	(H)〈A〉−(s+ 1

2 )‖�C〈t〉−s .

The restriction 0< s < 1/2 comes from the fact that we do not require thatH has a
spectral gap nor that its domain is stable under the action of the groupeiAt (see[23]). Notice
that this is the situation of the application under consideration in this paper.
We end this review by a criterion which allows us to check regularity requirement. It is

actually a particular case of a theorem obtained in [22] and published in an appendix of [4].
Let s ∈ (0, 1). We say that a bounded operatorT in H is of classCs(A) if the map

t �−→ T (t) = e−iAtT eiAt ∈ B(H)

is Hőlder continuous of orders ∈ (0, 1).
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In particular, if the operatorH is of classC1(A) and thatB = [H, iA] is bounded inH.
ThenH is of classC1+s(A) if B is of classCs(A).

Theorem 2.3. Let� > 1 be a self-adjoint operator inH such thatA�−1 is a bounded in
H. Then a bounded operator T inH is of classCs(A) if there exists a function� ∈ C∞

0 (R)

with �(x) > 0 if 0 < a < |x| < b < ∞ such that:

sup
r>1

‖rs�(�/r)T ‖ < ∞. (2.2)

3. Mourre’s estimate for the pure off-diagonal case

This section is entirely devoted to the pure off-diagonal case, i.e. the case wherebn = 0.
More precisely, consider the operatorH0 acting inH by

(H0�)n = an−1�n−1 + an�n+1.

LetN0 be a positive integer and consider the operatorA defined inH by

(A�)(n) = i(�n−1�n−1 − �n�n+1), (3.1)

�n = n

an

for |n|�N0. (3.2)

ClearlyA is essentially self-adjoint operator onl20(Z).
For notational convenience denote the first discrete derivative of�n by


n := �n+1 − �n.

Assumption (1.3) states that

n
n = O(|n|1−�),� > 1 at infinity.

For the Mourre estimate we need less than that:

Theorem 3.1. Assume that(1.2)holds and that

lim|n|→∞ 
n = 0. (3.3)

Then the operatorH0 is of classC1(A) and A is conjugate toH0 onR, i.e. there exist a
constanta > 0 and a compact operator K inH such that

[H, iA]�a + K.

Proof. (1) Let z ∈ C \ R. Start by showing that the sets

D(z) := {� ∈ D(A)/(H0 − z)−1� ∈ D(A)},
D(z) := {� ∈ D(A)/(H0 − z)−1� ∈ D(A)}
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are dense inD(A). Let {ek}k∈Z be the canonical orthonormal basis ofH, that is, for each
integerk the vectorek is defined by(ek)n = 0 for alln �= k and(ek)k = 1. For everyk ∈ Z

we define the vector

�k = (H0 − z)ek

= ak−1e
k−1 − zek + ake

k+1. (3.4)

Clearly�k ∈ D(z), since�k and(H0 − z)−1�k = ek belong tol20(Z) ⊂ D(A). Moreover,
{�k}k is linearly independent and span of{�k}k is dense inH. Indeed, letf ∈ H such that

〈�k, f 〉 = 0 ∀k ∈ Z.

According to (3.4) one has for allk ∈ Z:

0 = 〈�k, f 〉 = 〈(H0 − z)ek, f 〉
= ak−1fk−1 − z̄fk + akfk+1

= ((H0 − z)f )k.

It follows thatf ∈ D(H0) and

(H0 − z)f = 0.

SinceH0 is a self-adjoint operator andz ∈ C \ R, we deduce thatf = 0 and so span of
{�k}k is dense inH. Hence, by Gram–Schmidt procedure, one constructs an orthonormal
basis{ẽk} ofH from {�k}k. Eachẽk is a finite linear combination of the�k ’s and so belongs
toD(z). It follows thatD(z) contains all the elements of an orthonormal basis ofH and is
therefore dense inD(A) (sinceA is closed). The same can be done forD(z) by substituting
z to z.
(2) To show thatH0 is of classC1(A) it remains to verify the point (ii) of the Proposition

2.1. Direct computation shows that for� ∈ l20(Z) we have

〈�, [H0, iA]�〉 =
∑
n

�n(cn−2�n−2 + 2dn�n + cn�n+2), (3.5)

where for|n|�N0 we have

dn = 1;
cn = an+1�n − an�n+1

= n
an+1

an

− (n + 1)
an

an+1
.

We obviously have
an+1

an

=
(
1+ �

n
+ O(1/n2)

)
(1+ 
n − 
nO(�n))

= 1+ �
n

+ 
n + 
nO(�n),

an

an+1
= 1− �

n + 1
− 
n + 
nO(�n).
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It follows that

cn = n
an+1

an

− (n + 1)
an

an+1
= −1+ 2� + (2n + 1)
n + 
nO(�n)

= −1+ 2� + εn.

Since�n → 0 andn
n → 0 asn tends to infinity (by our hypothesis),εn → 0 too. In
particular, the quadratic form[H0, iA] can be extended to a continuous quadratic form in
H. Combining this with the point (1) of the present proof we conclude thatH0 is of class
C1(A), and the associated operator to[H0, iA], which will denote by the same symbol, is
a bounded operator inH.
(3) From the last computation we further deduce the identity

[H0, iA] = 2+ (2� − 1)T + K, (3.6)

where the operatorsT andK acts inH as follows

(T �)n = �n−2 + �n+2, (3.7)

(K�)n = εn−2�n−2 + εn�n+2. (3.8)

On one hand, the operatorT is bounded and

‖T ‖�2.

On other hand, sinceεn → 0 as|n| → ∞, the operatorK is compact. Then

[H0, iA]�2(1− |2� − 1|)+ K.

Since� ∈ (0, 1), the number

a = 2(1− |2� − 1|) > 0.

In other words,

[H0, iA]�a + K, (3.9)

which finishes the proof of the theorem.�

Remark. According to the first point of Theorem 2.1 the operatorH0 has at most a finite
number of eigenvalues. Emphasis the fact that this has been obtained without specifying
the matrix elements�n of A for |n|�N0. This can be done in such a way that (cf.[13]) the
commutator[H0, iA] > 0 which implies thatH0 has no eigenvalues. Indeed, sinceH0 is
of classC1(A) the Virial lemma holds (cf. [1]):

〈f, [H0, iA]f 〉 = 0 for every eigenvectorf of H.

This is also themain argument of[12,13], but the authors of these papersmade considerable
efforts to establish it.

Proposition 3.1. The operator K is of classCs(A), s = �−1
1−� > 0.

The proof of this proposition is based on Theorem 2.3 and the following obvious lemma
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Lemma 3.1. Let� be the positive operator defined by

(��)n = (1+ |�n|)�n.

The operator�−1A is bounded inH.

Proof of Proposition 3.1. According to Theorem 2.3,K is of classCs(A), for somes > 0,
if

sup
r>0

rs‖�(�/r)K‖ < ∞.

for some function� ∈ C∞
0 (R) with �(x) > 0 if 0 < a < |x| < b < ∞. But

rs‖�(�/r)K‖ � rs‖�(�/r)�s�−sK‖
� rs‖�(�/r)�−s‖ · ‖�sK‖
� Crsr−s‖�sK‖ = C‖�sK‖. (3.10)

On the other hand, according to the proof of Theorem 3.1 all the matrix elementsεn of K
behaves forn large enough as follows

εn = O(n
n).

Hypothesis (1.3) implies thatεn = O(|n|−(�−1)) at infinity. Hence for someN large enough
one has

‖�sK‖�C(1+ sup
|n|>N

|n|s(1−�)|n|−(�−1)) < ∞,

provided thats = �−1
1−� > 0. �

Corollary 3.1. The operatorH0 is of classC1+s(A), s = �−1
1−� > 0.

Proof. According to the proof of Theorem 3.1 we have

B0 = 2+ (2� − 1)T + K.

So B is of classCs(A) if each componentT andK are. On one hand, according to the
preceding lemmaK is of classCs(A). It is enough then to show that the bounded operator
T is of classCs(A). We will prove in fact thatT is of classC1(A). Indeed, it is not difficult
to get

([T , iA]�)n = (�n − �n+2)�n+3 + (�n+1 − �n−1)�n+1

+(�n − �n−2)�n−1 + (�n−3 − �n−1)�n−3.

But obviously

�n − �n+2 = O(|n|−�) as|n| → +∞.

In particular,[T , iA] can be extended to a bounded operator inH and soT is of class
C1(A). �
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From Theorem 2.1 one has

Corollary 3.2. The spectrum ofH0 is purely absolutely continuous onR up at most a finite
number of eigenvalues.

4. Proof of Theorem1.1

Theorem 1.1 deals with the operatorH which we rewrite as follows

H = H0 + b,

whereb is themultiplication operator by the sequence(bn)n. Consider theoperatorAdefined
by (3.1) and (3.2).

Proposition 4.1. Suppose that

lim
n→∞ |n|1−�(bn+1 − bn) = 0. (4.1)

Then there exists a constantC > 0 such that for any	,� ∈ l20(Z) we have

‖〈	, [b, iA]�〉|�C‖	‖ · ‖�‖.
Moreover,the associated bounded operator[b, iA] is compact inH.

Proof. It is easy to see that̃b = [b, iA] is given, in form sense onl20(Z), by

(b̃�)n = �n−1(bn − bn−1)�n−1 + �n(bn+1 − bn)�n+1.

But according to our hypothesis

b̃n = n

an

(bn+1 − bn) → 0 as|n| → ∞.

So the assertion of the proposition follows immediately.�

Corollary 4.1. Assume that(3.3) and (4.1) hold.Then the operator H is of classC1(A)

and A is conjugate to H onR.

Proof. Combining the preceding proposition with the results of the last section, we get that
there exists a constantC > 0 such that for any	,� ∈ l20(Z) we have

|〈	, [H, iA]�〉| = |〈	, [H0, iA]�〉| + |〈	, [b, iA]�〉|
� C‖	‖ · ‖�‖. (4.2)

Moreover, one can prove that the setsD(z) andD(z) are dense inD(A) as we did forH0.
HenceH is of classC1(A) and[H, iA] is a bounded operator inH. Moreover one has

[H, iA] = [H0, iA] + [b, iA]
� a + K1,

wherea = 2(1− |2� − 1|) > 0 andK1 = K + [b, iA] which is a compact operator inH.
This shows that the Mourre estimate holds onR. �
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Remark. In particular,H has at most a finite number of eigenvalues.

Proposition 4.2. Under the hypothesis of Theorem1.1the operator H is of classC1+s(A),

s = m/(1− �) > 0.

Proof. We saw that[H, iA] = [H0, iA] + [b, iA] is a bounded operator inH. More-
over, On one hand we have[H0, iA] is a of classC(�−1)/(1−�)(A). On the other hand,
[b, iA] is of classC(�+�−1)/(1−�)(A). This can be shown by the same argument as for
Proposition 3.1, since all matrix elements of[b, iA] decay as|n|1−�−�. So,[H, iA] is of
classCs(A), s = min(�−1

1−� ,
�+�−1
1−� ). This means thatH is C1+s(A). We conclude the proof

by noting that according to the definition of the numberm in the introduction we have
s = m/(1− �). �

Proof of Theorem 1.1–1.2.Theorem1.1 follows fromCorollary 4.1, Proposition 4.2 com-
bined with Theorem 2.1.
Again from Corollary 4.1, Proposition 4.2 combined with Theorem 2.2 we get that the

holomorphic maps

C± � z �−→ 〈A〉−(s+ 1
2 )(H − z)−1〈A〉−(s+ 1

2 ) ∈ B(H)

extends to a locallyHőlder continuousmapsonC±∪[R\�p(H)]of order� = min( m
1−� ,

1
2).

But

〈A〉(s+ 1
2 )N−(s+ 1

2 )(1−�) is a bounded operator inH.

And by the definition of the number� in the introduction one has(
s + 1

2

)
(1− �) = m + 1− �

2
= �.

Hence the maps which toz ∈ C± associate

N−�(H − z)−1N−� = N−�〈A〉(s+ 1
2 )[〈A〉−(s+ 1

2 )(H − z)−1〈A〉−(s+ 1
2 )]

· 〈A〉(s+ 1
2 )N−�

clearly extend to a Hőlder continuous maps onC± ∪ [R \ �p(H)] of order�.
The second assertion of the theorem follows by a similar argument from

N−�e−iH t	(H)N−� = N−�〈A〉(s+ 1
2 )[〈A〉−(s+ 1

2 )e−iH t	(H)〈A〉−(s+ 1
2 )]

· 〈A〉(s+ 1
2 )N−�

The proof is finished. �
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