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Abstract

We show a Mourre estimate for a class of unbounded Jacobi matrices. In particular, we deduce the
absolute continuity of the spectrum of such matrices. We further conclude some propagation theorems
for them.
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1. Introduction
1.1. Overview

Let  := I2(Z) be the complex Hilbert space of square summable sequences endowed
with the scalar product
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Consider the second-order difference operbt@cting in? by

(Hlp)n = an—1lﬁn,1 + bnlpn + ay 'wbn+lv (1.1)

whereb,, € Randa, > Oforalln € Z. Itis usually called a bilateral Jacobi matrix. Clearly,

H is a densely defined symmetric operatorléhZ). The latter denotes the subspace of
sequences with only finitely many nonzero coordinates. It is known thg2[kfin general,

H is not essentially self-adjoint dﬁ(Z) if the weightsa,, grow fastly to infinity. In such

case all the self-adjoint extensions have a purely discrete spectrum. In the sequel we assume
thatH is essentially self-adjoint on thé(Z). This is the case if, for example, the Carleman
condition

1
Z A =00, Wwhere|A,|=maxX{a_,_2,a,}.
n

n

is satisfied. For a deeper discussion of the self-adjointness question of Jacobi matrices we
refer the reader tf2] (see also [16] for recent results).

The spectral properties of Jacobi matrices are extensively studied by the help of different
methods, see for example [5-15,17,19] and references therein. A part of this literature is
based on the positive commutator method of Putnam—Kato (cf. [20]). Itis used, for example,
by Dombrowski [6—8], Dombrowski—Pedersen [9—12], Janas—Moszynski[13] and Pedersen
[19]. This paper is a contribution in this direction.

The Putnam—Kato method states that if there is a bounded self-adjoint opesatdrthat
the commutatofH, i A] is positive and injective, thed has a purely absolutely continuous
spectrum. This theorem allowed the resolution of great spectral problems [21]. However, the
boundedness dk is rather annoying in some applications, since it excludes many natural
candidates to this role. The same can be said on the required commutator positivity which
is global and then very unstable under perturbation (even compact). The conjugate operator
theory of Mourre [1,3,18,23] resolves these problems. The conjugate op&fagrnot to
be bounded anymore. Moreover, the commutator has only to be positive locally and up to a
compact operator. The prize to pay is some additional regularity of the underlying operator
H with respect tAA.

The Mourre method has proved its powerful in the spectral analysis and scattering theory
of partial differential operators (see [1]), discrete Schrédinger operators and bounded Jacobi
matrices (see [4]), etc. Surprisingly, in the context of unbounded Jacobi matrices Mourre’s
method has never been used yet. This might create a negative impression on this theory
in this context. We even meet in the literature statement explaining that Putham—Kato’s
method is superior to Mourre’s theory in the context of unbounded Jacobi matrices, see
the introduction of [19]. Our purpose in this paper is to show that this is not fully true. We
indeed apply the conjugate operator theory to study the spectral and propagation properties
of unbounded Jacobi matrices. We focus here on models considered in the quoted literature
and for which Putnam—Kato’s method does not apply, since the unboundedrfesseaf
[12,13].

More specifically, in this paper we deal with weights of the following form

a, = 1In|*(L+mn,), 0<a<1 andy, - 0, asn — oo. (1.2)
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By Carleman conditiorH is essentially self-adjoint oiﬁ(Z). Consider the operatdk
defined inH by

(AY)(n) = i(tn—1¥_1 — oy 10),

n
oy = — for |n| = No,

an
The operatorA has been used in the literature for the analysis of Jacobi matrices with
weights of the form (1.2) but with null diagonal elements, see for instance [12,13]. Since
for 0 < o < 1 the operatoA is unbounded, Putnam—Kato’s method does not apply. This
explains why only the absence of the point spectrum is proven in [12,13] by a kind of Virial
theorem. In this work we show that Mourre’s theory applies easily in this context and so
we complete these results by proving the absence of singular continuous spectrum for such
matrices. The stability of the Mourre estimate under compact perturbation allows us to treat
a class of diagonal elements.

Finally, notice that for the case whexe= 1 the operatoA becomes bounded and no
Mourre estimate can be expected with séchThis does not mean that Mourre’s theory
does not apply but only says that we have to change the conjugate op&ratais will
be done in a work in progress. For the case whete 0 we get the discrete Schrédinger
operator already studied by Mourre’s method in [4].

1.2. Main results
Our assumption on, andb, are the following:
s — 0| <Clnl P, with > 1, (1.3)
|bpy1 — bn| <Cln| ™%, witho+ 6 > 1. (1.4)

This means that the discrete derivativegjpfand 8, decays sufficiently enough, and then
n, andp, are not so oscillating.

Theorem 1.1. If (1.2)—(1.4)hold then the point spectrum,(H) of H is finite and the
singular continuous spectrumy(H) of H is empty.

In particular, ify, = b, = 0 then we are in the situation considered by [12], and if
only b, = 0 we get the case considered by [13]. In these papers only the absence of the
point spectrum is proven. Notice, however, that Theorem 1.6 of [13] applies to our case
but their proof is based on the Gilbert—Pearson theory of subordinate solutions. This is a
one-dimensional method while our approach is not, and so our results can be extended to
multidimensional models. Furthermore, we derive some a priori estimates for the resolvent
of H, that are of physical interest, see the next theorem.

Define the following numbers

m=min(f—1,a+0—1);
1—«a
5

o=m-+
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Consider the multiplication operatbracting in by

(NY)» = V1+n2y,,

which is clearly a positive operator #. For a complex numberwe denote byiz and3z
the real and the imaginary partsofPutC. = {z € C/ + Jz > 0}. We have the following
propagation theorem:
Theorem 1.2. Assume thafl.2)—(1.4)hold. Then the holomorphic maps

Ci3z+— N"9(H -2 N""¢eBH)

extendsto alocally Hlder continuous mapgonU[R\a,(H)] of orderf = min(1=;, %).
Moreover for allp € C5°(R\ ¢,(H)) we have

IN=e  Hl o(H)N | <C @+ 1))~

The paper is organized as follows. In Section 2 we give a brief review on what we need
from the conjugate operator theory. Section 3 is completely devoted to caseiyhere.
In Section 4 we prove Theorenisl and 1.2.

2. The conjugate operator method

In this section we present a short description of what we need from Mourre’s theory. This
is based on [1,23].

Let H, A betwo self-adjoint operators in a Hilbert spd¢eDenote by (H) the spectrum
of H, and forz € C\ ¢(H) we setR. = (H — z)~ ! the resolvent oH. We equipD(H)
with the graph topology associated to the norm

Iflle = IFIT+ITHA

Definition 2.1. Let 0 < s < 1. We say thaH is of classC1(A) if the map
t+— R, (1) := e_iA’RzeiAt € B(H)

is strongly of clas€' on R for somez € C\ ¢(H). In such case if the derivative is H6lder
continuous of ordes (respectively strongly’!) then we say thaH is of classC1t5(A)
(respectivelyC?(A)).

Forz € C\ a(H) define

D(z) :== {¥y € D(A)/R(2)¥ € D(A)}.

One has the following characterization of #i&(A)-regularity in terms of the commutator
[H,iA] (se€[l]):

Proposition 2.1. The operator His of clasg(A) if and only if the following two conditions
hold:
(i) the setsD(z) and D(z7) are dense inD(A), for somez € C\ a(H),
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(ii) thereis a constant > 0 such that for alky € D(A) N D(H):
(W, [H. i AW)| = 2%, i AY) < clly 1%

In particular, ifH is of classC1(A) thenD(A) N D(H) is dense inD(H) endowed with
I -l and[H,iA] has a unique extension to a continuous sesquilinear forr @).
Then by Riesz Lemma there exists a unique bounded operator, denoted by the same symbol
[H,iA], from D(H) to its adjointD(H)* associated to this extension. [Eebe the spectral
measure of.

Definition 2.2. Assume thaH is of classC1(A). We say thaA is conjugate td on a real
open sefA if there exist a constamt > 0 and a compact operatiirin H such that

E(A[H,iA]JE(A)>E(A) + K. (2.1)

The inequality (2.1) is called the Mourre estimate.

Theorem 2.1. Assume that H is of clagg!(A) and that A is conjugate to H on a real open

setA. Then:

(1) the operator H has at most a finite number of eigenvalués(counted with multiplic-
ities).

(2) if His of classC1t#(A) for somes > 0then H has no singular continuous spectrum in
A.

The last statement is a particular case of the main theord@8p{see [1] for different
versions of this theorem). Let us get) = (1 + A2)/2. One has

Theorem 2.2. Assume that H is of clagg'**(4),0 < s < 1/2.Then the holomorphic
maps

Coi 5z (A 6D (H — )71 (A) "6+ ¢ BH)

extends to a locally Holder continuous maps@©@a U [A \ ¢,(H)] of order s.Moreover,
for everyp € C3°(A\ 0,(H)) we have

1(A) 6+ D= Ht o(H) (A)"CHD | < C (1)~

The restriction O< s < 1/2 comes from the fact that we do not require tHalas a
spectral gap nor that its domain is stable under the action of the gtti(se€[23]). Notice
that this is the situation of the application under consideration in this paper.

We end this review by a criterion which allows us to check regularity requirement. It is
actually a particular case of a theorem obtained in [22] and published in an appendix of [4].

Lets € (0, 1). We say that a bounded operaian H is of classC*(A) if the map

t—T() = eI AT ¢ B(H)

is Holder continuous of ordere (0, 1).
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In particular, if the operatd is of classC1(A) and thatB = [H, i A] is bounded irf.
ThenH is of classC1*$(A) if Bis of classC* (A).

Theorem 2.3. Let A > 1 be a self-adjoint operator ift{ such thatAA~1 is a bounded in
H. Then a bounded operator T # is of classC*(A) if there exists a functiofi € C§°(R)
with0(x) > 0if 0 < a < |x| < b < oo such that:

supllr*O(A/ )T < oo. (2.2)

r>1

3. Mourre’s estimate for the pure off-diagonal case

This section is entirely devoted to the pure off-diagonal case, i.e. the casehyhere.
More precisely, consider the operatids acting inH by

(HoY)n = an-1¥, 1+ an¥,, 1 1.

Let Ng be a positive integer and consider the operatdefined inH by
(AY)(n) = i(otn-1,_1 — %Wy i1), (3.1)

% = =~ for |n| > No. (3.2)
a

n

ClearlyA is essentially self-adjoint operator tﬁ(Z).
For notational convenience denote the first discrete derivatiyg by

Vn = Mg = M-
Assumption (1.3) states that
ny, = 0(n* %), p>1 atinfinity.
For the Mourre estimate we need less than that:
Theorem 3.1. Assume thafl.2) holds and that

lim y, =0. (3.3)

|n|]—o0

Then the operatoHy is of classC1(A) and A is conjugate tdp on R, i.e. there exist a
constantz > 0 and a compact operator K i such that

[H,iA]Za + K.

Proof. (1) Letz € C\ R. Start by showing that the sets

D(z) = (y € D(A)/(Ho — 2) 1y € D(A)},
D@) :={y € D(A)/(Ho —7) 1y € D(A)}
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are dense i (A). Let {¢¥},c7 be the canonical orthonormal basis#f that is, for each
integerk the vectorX is defined by(e¥),, = 0 for alln # k and(e*); = 1. For every € 7
we define the vector

W = (Ho — 2)é*

= ap_16"1 — zeF + qpeftL, (3.4)

Clearlyy* € D(z), sincey* and(Ho — z)~2y/* = ¢* belong tol2(Z) c D(A). Moreover,
{zp"}k is linearly independent and span{wk}k is dense ir{. Indeed, letf € H such that

Wk fy=0 VkeZ.

According to (3.4) one has for atl e Z:
0= (", /) = ((Ho—2)é", f)

=ag—1fk-1— Sk + ak fi+1

=((Ho—2) k.
It follows that f € D(Hp) and

(Ho—2)f =0.

Since Hy is a self-adjoint operator argle C \ R, we deduce thaf = 0 and so span of
{z//k}k is dense irH. Hence, by Gram—Schmidt procedure, one constructs an orthonormal
basis{é¥} of H from {lp"}k. Eaché is a finite linear combination of thg"’s and so belongs
to D(z). It follows that D(z) contains all the elements of an orthonormal basi& @nd is
therefore dense i (A) (sinceAis closed). The same can be donef) by substituting
ztoz.

(2) To show thaty is of classC1(A) it remains to verify the point (ii) of the Proposition
2.1. Direct computation shows that fgre IS(Z) we have

(W, [Ho, iAW) = D W (cn—2Viy—p + 2dutf, + cuthyi), (3.5)

where for|n| > Ng we have

d, =1;

Cp = Ap41%y — ApOlp41
an+1 dn

—(n+1) .
dn anp+1

=n

We obviously have

Wil _ (14 % +0/m) A+, = ,001,)

dn

o
=1+ ; + +yn0(’7n)’

= - 4+ 0®,).
- ] Vu +7,0,)
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It follows that

an+1 dn

—(n+1)
dn an+1

=—-14+20+¢,.

=—-1+20+ (2n + 1)Vn + Vno(”n)

Ch =n

Sincey, — 0 andny, — 0 asn tends to infinity (by our hypothesisy,, — 0 too. In
particular, the quadratic foriHp, i A] can be extended to a continuous quadratic form in
‘H. Combining this with the point (1) of the present proof we conclude Hgis of class
Cc1(A4), and the associated operatof #y, i A], which will denote by the same symbol, is
a bounded operator iH.

(3) From the last computation we further deduce the identity

[Ho,iAl=2+4 2u— )T + K, (3.6)
where the operatorBandK acts in# as follows
(TY)n =VYn_2+ V¥, (3.7)
(K)n = en—2W,_2 + ety 12 (3.8)
On one hand, the operatdiis bounded and
I7I<2
On other hand, sincg, — 0 as|n| — oo, the operatoK is compact. Then
[Ho,iA]=>2(1— |24 — 1)) + K.
Sincex € (0, 1), the number
a=21-|2z—1]) > 0.
In other words,
[Ho,iAl>a + K, (3.9)

which finishes the proof of the theorem(]

Remark. According to the first point of Theorem 2.1 the operalfyprhas at most a finite
number of eigenvalues. Emphasis the fact that this has been obtained without specifying
the matrix elements, of Afor |n| < No. This can be done in such a way that (df3]) the
commutator{ Hp, i A] > 0 which implies thatHy has no eigenvalues. Indeed, sinfégis

of classC1(A) the Virial lemma holds (cf. [1]):

(f, [Ho,iA]f) =0 for every eigenvectof of H.

This is also the main argument[d2,13], but the authors of these papers made considerable
efforts to establish it.

Proposition 3.1. The operator K is of clas§*(A), s = % > 0.

The proof of this proposition is based on Theorem 2.3 and the following obvious lemma
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Lemma 3.1. Let A be the positive operator defined by
(Aw)n = (1+ |°‘n|)wn
The operatorA 1A is bounded ir#.
Proof of Proposition 3.1. According to Theorem 2.X is of classC* (A), for somes > 0,
if
supr®|0(A/r)K || < co.
r>0

for some functiort) € C5°(R) with 0(x) > 0if0 < a < |x| < b < oo. But

rIOA/DK | < rI0A/HA AT K|
< rOA/DAT - IAK
< Crir N K = CIAK]. (3.10)

On the other hand, according to the proof of Theorem 3.1 all the matrix elemeatK
behaves fon large enough as follows

en = 0(ny,).

Hypothesis (1.3) implies thay, = O (Jn|~#~D) atinfinity. Hence for somdl large enough
one has

IAK(I<CL+ sup n[*E2n~FD) < o,
n|>N

provided that = [lf%ol( >0. O

Corollary 3.1. The operatorHy is of classC1(A), s = f%l > 0.

o
Proof. According to the proof of Theorem 3.1 we have
Bo=2+ (20— 1T+ K.

So B is of classC*(A) if each componenT andK are. On one hand, according to the
preceding lemm& is of classC*(A). It is enough then to show that the bounded operator
Tis of classC*(A). We will prove in fact thafl is of classC1(A). Indeed, it is not difficult
to get
([T, iA]lp)n = (ap — O‘n+2)wn+3 + (o1 — an—l)wn+1
+ (ot — O‘n—Z)‘pn—l + (-3 — O‘n—l)lpn—?
But obviously

%y — opt2 = O(In|™%)  as|n| — +oo.

In particular,[T,iA] can be extended to a bounded operato#irand soT is of class
cla). O
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From Theorem 2.1 one has

Corollary 3.2. The spectrum affy is purely absolutely continuous éhup at most a finite
number of eigenvalues.

4. Proof of Theorem1.1

Theorem 1.1 deals with the operatémwhich we rewrite as follows
H = Hy+ b,
wherebis the multiplication operator by the sequeiigg),,. Consider the operatérdefined
by (3.1) and (3.2).
Proposition 4.1. Suppose that
lim |n)**(byi1 — by) = 0. (4.1)
n—oo

Then there exists a constafit> 0 such that for anyp, y € lg(Z) we have

(@, [b, i Al < Clloll - ¥
Moreover,the associated bounded operafér i A] is compact irH.

Proof. Itis easy to see thdt=[b,iA]is given, in form sense olﬁ(Z), by

(l;'ab)n = oy—1(by — bnfl)'nbn—l + oy (bpy1 — bn)‘//n+1-
But according to our hypothesis

n
bn = a—(bn_;,_]_ — bn) —0 aS|n| — OQ.
n

So the assertion of the proposition follows immediately!

Corollary 4.1. Assume tha¢3.3) and (4.1) hold. Then the operator H is of claggl(A)
and A is conjugate to H oR.

Proof. Combining the preceding proposition with the results of the last section, we get that
there exists a constagt > 0 such that for any, € lcz,(Z) we have
(o, [H,iAl))| = [{@, [Ho, iAIY)| + [{@, [b, i AlY)]
< Cllol - Il (4.2)
Moreover, one can prove that the sét&) and D(7) are dense itD(A) as we did forHp.
HenceH is of classC1(A) and[H, i A] is a bounded operator iH. Moreover one has

[H,iA]

wherea = 2(1 — |20 — 1|) > 0 andK; = K + [b, i A] which is a compact operator #.
This shows that the Mourre estimate holdsfon O
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Remark. In particular,H has at most a finite number of eigenvalues.

Proposition 4.2. Under the hypothesis of Theord the operator H is of clas§!**(A),
s=m/(1—a) > 0.

Proof. We saw that H,iA] = [Ho,iA] + [b,iA] is a bounded operator i%. More-
over, On one hand we hayélp, i A] is a of classCf~D/1-%(A). On the other hand,
[b,iA] is of classC*To~1/A=2(A). This can be shown by the same argument as for
Proposition 3.1, since all matrix elements[bfi A] decay agn|*~°. So,[H, i A] is of
classC*(A), s = min(/lg;_ol(, “ﬁ;l). This means that is C1+5(A). We conclude the proof
by noting that according to the definition of the numipein the introduction we have
s=m/(1—o). O

Proof of Theorem 1.1-1.2.Theorem 1.1 follows from Corollary 4.1, Proposition 4.2 com-
bined with Theorem 2.1.
Again from Corollary 4.1, Proposition 4.2 combined with Theorem 2.2 we get that the
holomorphic maps
Ci 32— (A)CHD(H — 1A+ € B

extends to alocally H6lder continuous mapgbnJ[R\ o, (H)] of ordert = min(4=;, %).
But

(4)6+2) N=6+2)1=2 5 3 bounded operator iH.
And by the definition of the numberin the introduction one has
+ ! 1l-o) + 1-o o
S - — =m = 0.
2 2
Hence the maps which toe C.. associate
N=(H =) N~ = N=7(A) S D[(A) 0D (H — 2)H4) "0+
. <A>(S+%)N—6
clearly extend to a H6lder continuous mapsonU [R\ ¢,(H)] of orderd.
The second assertion of the theorem follows by a similar argument from
N~ M p(H)N =" = N=7(A) S+ D[(A) 0D Ml (1) (4)"0+)]
. (A)(S-‘r%)N—G

The proof is finished. O
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